An SVM classifier to separate false signals from microcalcifications in digital mammograms.

نویسندگان

  • A Bazzani
  • A Bevilacqua
  • D Bollini
  • R Brancaccio
  • R Campanini
  • N Lanconelli
  • A Riccardi
  • D Romani
چکیده

In this paper we investigate the feasibility of using an SVM (support vector machine) classifier in our automatic system for the detection of clustered microcalcifications in digital mammograms. SVM is a technique for pattern recognition which relies on the statistical learning theory. It minimizes a function of two terms: the number of misclassified vectors of the training set and a term regarding the generalization classifier capability. We compare the SVM classifier with an MLP (multi-layer perceptron) in the false-positive reduction phase of our detection scheme: a detected signal is considered either microcalcification or false signal, according to the value of a set of its features. The SVM classifier gets slightly better results than the MLP one (Az value of 0.963 against 0.958) in the presence of a high number of training data; the improvement becomes much more evident (Az value of 0.952 against 0.918) in training sets of reduced size. Finally, the setting of the SVM classifier is much easier than the MLP one.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic detection of clustered microcalcifications in digital mammograms using an SVM classifier

In this paper we investigate the performance of a Computer Aided Diagnosis (CAD) system for the detection of clustered microcalcifications in mammograms. Our detection algorithm consists on the combination of two different methods. The first one, based on difference-image techniques and gaussianity statistical tests, finds out the most obvious signals. The second one is able to discover more su...

متن کامل

Automatic detection of clustered microcalcifications using a combined method and an SVM classifier

In this paper we investigate the performance of a Computer Aided Diagnosis (CAD) system for the detection of clustered microcalcifications in mammograms. Our detection algorithm consists on the combination of two different methods. The first one, based on filtering techniques and gaussianity statistical tests, finds out the most obvious signals. The second one is able to discover more subtle mi...

متن کامل

SUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS

This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...

متن کامل

A Computer Aided Detection (CAD) System for Microcalcifications in Mammograms - MammoScan mCaD

Clusters of microcalcifications in mammograms are an important sign of breast cancer. This paper presents a complete Computer Aided Detection (CAD) scheme for automatic detection of clustered microcalcifications in digital mammograms. The proposed system, MammoScan μCaD, consists of three main steps. Firstly all potential microcalcifications are detected using a a method for feature extraction,...

متن کامل

A Computer Aided Detection (CAD) System for Microcalcifications in Mammograms - MammoScan μCaD

Clusters of microcalcifications in mammograms are an important sign of breast cancer. This paper presents a complete Computer Aided Detection (CAD) scheme for automatic detection of clustered microcalcifications in digital mammograms. The proposed system, MammoScan μCaD, consists of three main steps. Firstly all potential microcalcifications are detected using a a method for feature extraction,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 46 6  شماره 

صفحات  -

تاریخ انتشار 2001